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Abstract 1 Introduction

Formal capture and analysis of the required behav-

ior of control systems have many a&,antages. For in-

stance, it encourages rigorous requirements analysis,

the required behavior is unambiguously d@ned, and

we can assure that various safety properties are satis-

fied. Formal modeling is, however, a costly and time

consuming process and if one could reuse the formal

models over a family of products, significant cost sav-

ings would be realized.

In an ongoing project we are investigating how to

structure state-based models to achieve a high level

of reusability within product families. In this paper

we discuss a high-level structure of requirements mod-

els that achieves reusability of the desired control be-

havior across varying hardware pla(orms in a prod-

uct family. The structuring approach is demonstrated

through a case study in the mobile robotics domain

where the desired robot behavior is reused on two di-

verse pla(orms_ne commercial mobile pla(orm and

one build in-house. We use our language RSML-e to

capture the control behavior for reuse and our tool

NIMBUS to demonstrate how the formal specification

can be validated and used as a prototype on the two

platforms.
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quirements Reuse, Control Systems, RSML -e
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Reuse of software engineering artifacts across

projects has the potential to provide large cost savings.

Traditionally, the research in the reuse community has

focused on how to construct reusable software com-

ponents, and how to classify and organize these com-

ponents into libraries where they can be retrieved for

use in a particular application. We know, however, that

coding errors are not the main source of problems and

delays in a software project; incomplete, inconsistent,

incorrect, and poorly validated requirements are the

primary culprit [4]. Thus, we hypothesize that reuse

of requirements in conjunction with reuse of design

and code will provide greater benefits in terms of both

cost and quality. In tiffs paper we present an approach

to structuring formal requirements models for control

systems that make the control requirements reusable

across platforms where the hardware (sensors and ac-

tuators) may vary. We also illustrate the structuring

approach with an example from the mobile robotics

domain.

The beginnings of our approach is a high-level re-

quirements structuring technique based on the rela-

tionslffp between system requirements and the soft-

ware specification. We developed tiffs structuring

technique to enable a software development approach

we call specification-based prototyping [23] where

the formal requirements model is used as a prototype

(possibly controlling the actual hardware--hardware-

in-the-loop-simulation) during the early stages of a

project. Here we present how tiffs structuring ap-

proach also enables reuse of the lffgh-level require-

ments across members of a product family with vari-

abilities in the hardware components. The approach is



demonstrated via a case study in the mobile robotics
domain where the desired robot behavior is reused on

two diverse platforms---one commercial mobile robot

and one built in-house. We use our language RSML-e

to capture the desired control behavior for reuse and

our tool NIMBUS to demonstrate how the formal spec-

ification can be validated and used as a prototype on

both platforms.

The rest of the paper is organized as follows. Sec-

tion 2 describes related work on requirements reuse

and product families. Then, Section 3 describes our

approach to structuring the high-level system require-

ment and the software specification. Section 4 de-

scribes the mobile robotics platforms that we are using

as the case study in the paper and presents a simple

analysis of their commonalities and variabilities. The

requirements of the mobile platforms in the family are

presented in Section 5. The refinement of these system

requirements to a software specification is presented in

Section 6. In this section we also show how the sys-

tem requirements are reused across the members of the

product family. Finally, Section 7 presents a summary
and conclusion.

2 Related Work

The fotmdations for reuse of can be traced back to

the early work on program structure and modularity

pioneered by David Parnas and others [3, 20, 21, 22].

This work establishes the basis for reuse: the concept
of a self contained module with well-defined inter-

faces. Nevertheless, the guidelines for how to encap-

sulate and structure a model (in this case implemen-

tations) for reuse is not sufficiently addressed in this

early work. Thus, subsequent research in the field of

software reuse seeks to further define and provide ad-

ditional tools and techniques for reuse.

In the area of requirements reuse, Lam et al. pro-

vides some guidance on specific teclmiques which can

be used by organizations to introduce requirements

reuse into their software process [15]. In addition,

Lam addressed requirements reuse in the context of

component-based software engineering [ 14]. Our area

of interest is more in structuring of specifications to

achieve reuse; nevertheless, this work presents some

ideas about how to package and specify generic re-

quirements and how to factor requirements into plug-

gable requirements parts [15]. Of particular interest is

the relationship of their work to the product families

work being done at Lucent Technologies [2, 24].

Product family engineering is related to the work

presented in this paper; in particular, the FAST (Fam-

ily Oriented Abstraction, Specification and Transla-

tion) approach is of interest. FAST provides a pro-

cess for how to identify commonalities and variabili-
ties across a product family. This commonality analy-

sis can then be used to provide domain specific devel-

opment tools that will greatly reduce the development

costs for later generations of the product family. FAST

does not explicitly address the structuring of product

requirements. The FAST concepts of the domain anal-

ysis and the commonality analysis can, however, be di-

rectly applied to our work with formal specifications;

FAST provided some of the inspiration for the work

presented here.
Little work has been done on how to structure and

develop a formal specification in a language such as

RSML -e. One notable exception is the CoRE method-

ology [5, 6, 7] developed by the Software Productivity
Consortium. CoRE includes much useful information

on how to perform requirements modeling in a semi-

formal specification language (similar to the formal

SCR defined at the Naval Research Laboratory [12]).

Even so, the structuring mechanism proposed in the

CoRE guidebook is based on the physical structure of

the system as well as which pieces of the system that
are likely to change together--these two (often con-

flicting) structuring mechanisms may or may not be

beneficial to reuse. Furthermore, the way in which

the structuring techniques achieve reuse is not spec-

ified in the guidebook--reuse is not specifically ad-

dressed. Our work is based on many ideas similar to

those fotmd in CORE, but we have extended and re-

fined these ideas to address structuring of state-based

requirements models to achieve (1) conceptual clar-

ity, (2) robustness in the face of the inevitable require-

ments changes to which every project is subjected, (3)

robustness of the requirements as hardware evolves,

and (4) reuse of models as well as V&V results.

3 Structuring

In our work we are primary interested in safety crit-

ical applications; that is, applications where malfunc-

tion of the software may lead to death, injury, or en-

vironmental damage. Most, if not all, such systems

are some form of a process control system where the

software is participating in the control of a physical

system.

3.1 Control Systems

A general view of a software controlled system can

be seen in the center of Figure 1. This model con-

sists of a process, sensors, actuators, and a software

controller. The process is the physical process we are
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Figure 1. A traditional process control

model (center) and how it is captured
with the four variable model

attempting to control. The sensors measure physical
quantities in the process. These measurements are pro-

vided as input to the software controller. The con-
troller makes decisions on what actions are needed

and commands the actuators to manipulate the pro-

cess. The goal of the software control is to maintain

some properties in the physical process. Thus, un-

derstanding how the sensors, actuators, and process

behave is essential for the development and evalua-

tion of correct software. The importance of tlfis sys-

tems view has been repeatedly pointed out in the liter-

ature [19, 17, 12].

To reason about tlfis type of software controlled

systems, David Paruas and Jan Madey defined what

they call the four-variable model (outside square of

Figure 1) [19]. In tlfis model, the monitored vari-

ables (MON) are physical quantities we measure in

the system and controlled variables (CON) are phys-

ical quantities we will control. The requirements on

the control system are expressed as a mapping (REQ)

from monitored to controlled variables. For instance,

a requirement may be that "in case of a collision, the

robot must back up and turn 90 degrees left." Natu-

rally, to implement the control software we must have

sensors providing the software with measured values

of the monitored variables (INPUT), for example, an
indication if the robot has collided with an obstacle.

The sensors transform MON to INPUT through the IN
relation; thus, the IN relation defines the sensor func-

tions. To adjust the controlled variables, the software

generates output that activates various actuators that

can manipulate the physical process, for instance, a

means to vary the speed of the robot. The actuator

function OUT maps OUTPUT to CON. The behavior

of the software controller is defined by the SOFT rela-
tion that maps INPUT to OUTPUT.

The requirements on the control system are ex-

pressed with the REQ relation; the system require-

ments shall always be expressed in terms of quanti-

ties in the physical world. To develop the control soft-
ware, however, we are interested in the SOFT relation.

Thus, we must somehow refine the system require-

ments (the REQ relation) into the software specifica-
tion (the SOFT relation).

3.2 Structuring SOFT

The IN and OUT relations are determined by the

sensors and actuators used in the system. For example,
to determine if the robot has collided with an obstacle

we may use a bumper with micro-switches connected

to a digital input card. Similarly, to control the speed

of a robot we may use a digital to analog converter

and DC motors. Armed with the REQ relation, the 1N
relation, and the OUT relation we can derive the S OFT

relation. The question is, how shall we do this and how

shall we structure the description of the SOFT relation
in a language such as RSML-e?

As mentioned above, the system requirements

should always be expressed in terms of the physical

process. These requirements will most likely change

over the lifetime of the controller (or family of simi-

lar controllers). The sensors and actuators are likely to

change independently of the requirements as the con-

troller is reused in different members of a family or
new hardware becomes available; thus, all three rela-

tions, REQ, IN, and OUT, are likely to change over

time. If either one of the REQ, IN, or OUT rela-

tions change, the SOFT relation must be modified.

To provide a smooth transition from system require-

ments (REQ) to software specification (SOFT) and to

isolate the impact of requirements, sensor, and actu-

ator changes to a minimum, the structure of the soft-

ware specification SOFT should be based heavily on
the structure of the REQ relation [18, 23].

We achieve this by splitting the SOFT relation into

three pieces, IN -1, OUT -1, and SOFTnEQ (Figure 2).

IN -1 takes the measured input and reconstructs an es-

timate of the physical quantities in MON. The OUT -1

relation maps the internal representation of the con-

trolled variables to the output needed for the actuators

to manipulate the actual controlled variables. Given

the IN -1 and OUT -1 relations, the SOFTREQ rela-

tion will now be essentially isomorphic to the system

requirements (the REQ relation) and, thus, be robust if

it is reused on a new platform (manifested as changes
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Figure 2. The SOFT relation can be split

into three composed relations.

in the IN and OUT relations). Such changes would

only effect the IN -1 and OUT -1 portions of the soft-

ware specification. Thus, the structuring approach out-

lined in this section will makes the SOFTnEQ portion
of the software specification reusable over members of

a product family exhibiting the same high-level behav-
ior.

4 Mobile Robotics Platforms

When evaluating our work, we wanted to find a do-

main were a variety of similar platforms could be con-

structed on a university budget in a timely and cost
effective manner. Furthermore, we wanted this do-

main to be realistic--with the inclusion of noisy sen-

sors and actuators and the possibility of complex sen-
sor fusion and error detection. The mobile robotics

domain seemed ideally suited for these needs.

The mobile robotics platforms that we are using in

our research range in size from about the size of the

Mars Pathfinder to a small lego-bot. The robots have

a limited speed, and can operate either autonomously

(via a radio modem or radio Ethernet) or via a tether

cable going to a personal computer. The robotics plat-
forms come from various vendors and have a wide va-

riety of sensors and actuators available.

The platforms that are discussed in this paper are

shown in Figure 31. One platform, the Pioneer [1],

is built and sold by ActivMedia, Inc. The Pioneer in-

cludes an array of sonar sensors in the front and sides

that allow it to detect obstacles. To detect collisions,

the Pioneer monitors its wheels and signals a collision
when the wheels stall. The Pioneer includes an exten-

sive control library called Saplfira. The Pioneer is con-

trolled by a radio modem that plugs in to the personal

computer's serial port. Saphira manages the commu-

nication over the radio modem. Saphira is capable of

implementing complex rule-based control functions;

however, in our work we are using only the simplest

1Photograph by Thnothy F. Yoon

Figure 3. A picture of the robotic plat-

forms used in this paper

of Saphira functions that allow us nearly direct access

to the sensors and actuators. Nevertheless, the level of

abstraction presented by the Saphira library is signif-

icantly higher than on the other platform in this case

study: the lego-bot.

The lego-bot is a smaller platform built from Lego

building blocks and small motors and sensors. The

lego-bot uses a tank-like track locomotion system and

has infrared sensors for range detection. The lego-bot

is controlled via a tether to the robot from the per-

sonal computer. This tether is connected to a data-

acquisition card and the software specification for the

lego-bot behavior must directly manage the low-level
voltages and signal necessary to control the robot;

there is very little support for the actuators and sen-
sors.

Despite the significant difference between the plat-

forms, we wanted them to exhibit nearly identical vis-

ible behaviors; the only difference would be in the

hardware determined speed of the robot's movements.

Therefore, the visible behavior (the REQ relation) for

each robot is the same. Note that we are not addressing

non-behavioral requirements such as power consump-

tion and wear and tear of hardware components in our

discussions of reuse. We have focused solely on the

behavior captured in the requirements.

5 The REQ relation

The first step in a requirements modeling project is

to define the system boundaries and identify the mon-
itored and controlled variables in the environment. In

this paper we will not go into the details of how to



scopethesystemrequirementsandidentifythemon-
itoredandcontrolledvariables--guidelinesto help
identifymonitoredandcontrolledvariableshavebeen
discussedinnumerousotherplaces[6,13,18].Hereit
sufficestosaythatthemonitoredandcontrolledvari-
ablesexistin thephysicalsystemandactasthein-
terfacebetweentheproposedcontroller(softwareand
hardware)andthesystemtobecontrolled.

Forthemobilerobots,thegoalwastoconstructa
simplereactivecontrolbehaviorthatwouldcausethe
robottoexploreitsenvironment.Toaccomplishthis
objective,therobotmustbeabletoperformseveral
tasks:

• If therobotdetectsanobstacle,it shallattemptto
avoidit.

• If therobotcollideswithanobstacle,it shallat-
tempttorecoverfromthecollisionandcontinue
exploration.

• Intheabsenceofacollisionorobstacle,therobot
shallproceedtomoveforwardatfull speed.

Inthiscasestudy,wewantedallrobotsoftheprod-
uctfamilytoexhibitthesameexploratorybehavior.To
capturethisbehaviorwemustdiscovermonitoredand
controlledvariablesintheenvironmentthatwillallow
ustobuildtheformalmodel.Inaddition,whileeval-
uatingcandidatesformonitoredandcontrolledvari-
ableswemustkeepinmindthattheREQmodelshall
applytoallmembersoftheproductfamily.

Weidentifiedarobot'sspeed and heading as con-

trolled variables. Speed ranges from 0 to 100 and can

be mapped into a speed for each family member using
the maximum speed of the particular robot. Heading

ranges from -180 to 180 and indicates the number of

degrees that the robot may have to turn to avoid an ob-
stacle.

We identified CollisionDetected, Range, and Ob-
stacleOrientation as monitored variables. The Colli-

sionDetected variable is simply a Boolean value which
is true when there is a collision and false otherwise.

The Range variable is the distance from the robot to
the nearest obstacle and the ObstacleOrientation de-

notes whether the obstacle is straight ahead, or on the

right or left of the robot. These variables clearly reside

in the system domain and are sufficient to model the
desired behavior. If the monitored and controlled vari-

ables are chosen appropriately, the specification of the

REQ relation will be focused on the issues which are

central to the requirements on the system.

Since our work is based around a modeling lan-
guage called RSML -e (Requirements State Machine

Language without events), a state-based language suit-

able for modeling of reactive control systems, we pro-

vide a short introduction to the notation before we con-

tinue with a discussion of the REQ relation for the mo-
bile robots.

5.1 Introduction to RSML -¢

RSML -¢ is based on the language Requirements

State Machine Language (RSML) developed by the

Irvine Safety Research group under the leadership of

Nancy Leveson [17]. RSML -e is a refinement of
RSML and is based on hierarchical finite state ma-

chines and dataflow languages. Visually, it is some-

what similar to David Harel's Statecharts [10, 8, 9].

For example, RSML -e supports parallelism, hierar-

chies, and guarded transitions. The main differences
between RSML -e and RSML are the addition in

RSML -e of rigorous specifications of the interfaces
between the environment and the control software,
and the removal of internal broadcast events. The re-

moval of events was prompted by Nancy Leveson's

experiences with RSML and a new language called

SpecTRM-RL that she has evolved from RSML. These

experiences have been chronicled in [16].

An RSML -¢ specification consists of a collection

of state variables, I/0 variables, interfaces, flmctions,

macros, and constants, which will be briefly discussed
below.

In RSML -e, the state of the model is the values

of a set of state variables, similar to mode classes in

SCR [12]. These state variables can be organized in
parallel or hierarchically to describe the current state

of the system. Parallel state variables are used to rep-

resent the inherently parallel or concurrent concepts in

the system being modeled. Hierarchical relationships

allow child state variables to present an elaboration of

a particular parent state value. Hierarchical state vari-

ables allow a specification designer to work at multiple

levels of abstraction, and make models simpler to un-
derstand.

For example, consider the behavioral requirements
for our mobile robots outlined in the introduction to

this section. The state variable hierarchy used to model
the requirements on this system can be represented as

in Figure 4. This representation includes both parallel

and hierarchical relationships of state variables: Fail-

14re and Normal are two parallel state variables and
RobotJ_ecoverAction is a child of Normal.

Next state fimctions in RSML -e determine the

value of state variables. These functions can be orga-

nized as transitions or conditional assignments. Con-

ditional assignments describe under which conditions

a state variable ass14mes each of its possible values.
Transitions describe the condition under which a state



Figure 4. The REQ relation state hierarchy

variable is to change value. A transition consists

of a source value, a destination value, and a guard-

ing condition. The two state function types are log-

ically equivalent; mechanized procedures exist to en-

sure that both types of functions are complete and con-
sistent [11].

The next state functions are placed into a partial

order based on data dependencies and the hierarchi-
cal structure of the state machine. State variables are

data-dependent on any other state variables, macros,

or I/O variables that are named in their transitions or
condition tables. If a variable is a child variable of

another state variable, then it is also dependent on its

parent variable. The value of the state variable can be

computed after the items on which it is data-dependent

have been computed. For example, the value of the

Robot_void_ction state variable would be computed
after the Obstacle3)istance state variable because the

action to take is dependent upon the range of the ob-
stacle.

Conditions are simply predicate logic statement

over the various states and variables in the specifica-

tion. The conditions are expressed in disjunctive nor-

mal form using a notation called AND/OR tables [17]

The far-left column of the AND/OR table lists the logi-

cal phrases. Each oftfie other columns is a conjunction

of those phrases and contains the logical values of the

expressions. If one of the columns is true, then the ta-
ble evaluates to true. A column evaluates to true if all

of its elements match the truth values of the associated

columns. An asterisk denotes "don't care." Examples
of AND/OR tables can be found later in this section and
in the next section.

I/O Variables in the specification allow the analyst
to record the monitored variables (MON) or values

reported by various external sensors (INPUT) (in the

case of input variables) and provide a place to cap-
ture the controlled variables (CON) or the values of

the outputs (OUTPUT) of the system prior to sending

them out in a message (in the case of output variables).

To further increase the readability of the specifi-

cation, RSML -e contains many other syntactic con-

ventions. For example, RSML -e allows expressions

used in the predicates to be defined as functions and

familiar and frequently used conditions to be defined

as macros. Finally, RSML -e requires rigorous speci-

fication of interfaces between the environment and the
model.

5.2 REQ Relation Overview

Due to space constraints, the entire model of the

REQ relation cannot be given in this paper and we will

focus on an illustrative subset. Figure 4 shows that the

REQ relation definition at the top level is split between
two state variables: Failure and Normal. The Failure

state variable encapsulates the failure conditions of the
REQ relation, whereas the Normal state variable de-



scribesthehowtherobottransitionsbetweenthevari-
oushigh-levelbehaviorsdiscussedattheintroduction
tothissection(obstacleavoidance,collisionrecovery,
etc.).ForthereminderofourdiscussionofREQ,we
will focusontheNormal state variable where this as-

pect of the requirements is captured (Figure 5).

The Normal variable defaults to the startup value.

This allows the specification to perform various ini-
tialization tasks and checks before the main behav-

ior takes over. The first transition in Figure 5 states

that after two seconds, the specification will enter the
Cruise Forward state.

The next two transitions govern the way that

the Normal state variable can change from the

CruiseForward value. If a collision is detected, then

the state variable changes to the CollisionJ_ecover

state. If an obstacle is detected, then the specifica-

tion will enter the Avoid_Obstacle state. Otherwise,
the value of the Normal state variable will remain un-

changed.

If a collision or obstacle is detected, the machine

needs to begin the Cruise_orward behavior when the

avoidance/recovery action has been completed. We ac-

complished this in the mobile robotics specification by

providing a "done" state in each of the sub-behaviors.

This is illustrated by the fifth and sixth transitions in

Figure 5.

Finally, it is also possible to transition from

Avoid_Obstacle directly to CollisionJ_ecover if, for

example, the robot hits an tmdetected obstacle; this

case is covered by the final transition in Figure 5.

Given this definition of the REQ relation high-
level behaviors, the definitions of the sub-behaviors

can be constructed in a similar and straightforward

manner. For example, if the robot hits an obsta-

cle, it will attempt to back up, turn, and then pro-

ceed forward again. This behavior is specified in
the RobotJ_ecover_ction state variable by having the

variable cycle though the values Backward, Turn, and

finally Done.

6 The SOFT relation

Normal

Location: Reacdve Connol

Transition: St almp---_ Cluis e Fol_val d

Condition:

Transition: Cruise Folwald--_Collision Recovel

Condition:

CollisionDetectedMacl o 0 = TRUE T
..Failule IN STATE Ok T

Transition: Cruise Folw01d ---_Avoid Obstacle

Condition:

ObstacleDetectedMacm 0 = TRUE T

CollisionD et ect edMac m 0 = FALSE T

..Failule IN STATE Ok T

Transition: Collision Recovel---IbClllise Fol_vald

Condition:

Plev Step(..Robot Recovm ActioniN STATE Done) T

..Failule IN STATE Ok

Transition: Avoid Obstacle _ Clllise FOl_vald

Condition:

Plev Step(..Robot Avoid Action IN STATE Done) T

..Failule IN STATE Ok

Transition: Avoid Obstacle --_ Collision Recovel

Condition:

Collis ionD etect edMacm 0 = TRUE T

..Failule IN STATE Ok

When refining the specification from REQ to
SOFT, we select the sensors and actuators that will

supply the software with information about the envi-
ronment, that is, we must select the hardware and de-

fine the IN and OUT relations for each platform. Con-
sequently, we will also need to define the IN -1 and

OUT-1 for each platform. We do not have the space

to discuss the IN, OUT, IN -1, and OUT -1 for every

monitored and controlled variable. Instead, we will
focus our discussion on two areas where the Pioneer

Figure 5. The definition of the Normal
state variable



and the lego-bot presented illustrative and challenging
differences.

6.1 Obstacle Detection--

Sonar versus Infrared

As members of the mobile robot product family that

we specified in Section 5, both the Pioneer and the

lego-bot have the ability to sense the distance to ob-

jects in their surroundings. Distance sensors typically

function by emitting some sort of signal (for example,

a sound in the case of sonar) and then measuring the

amount of time between the emission of the signal and

its being received back at the sensor. Given how fast
the signal can travel, the distance to the closest object

can be determined. Although the distance sensors may

be somewhat similar in their operation, different sen-

sors provide very different accuracies and ranges. For

example, a laser range finder is far more accurate and
has much less noise than the sonar sensors.

The Pioneer uses sonar sensors and the Saphira
software package to accomplish obstacle detection

whereas the lego-bot uses a set of simple infrared

range finders. This significant difference in the type
of sensors as well as differences in the number and

placement of the sensors leads to two quite different IN
relations. The differences of the IN relations necessi-

tate different IN -1 in the computation of the estimated

value of the Range monitored quantity.

PTransformRange

Type: 1NTEGER

Parameters:

iInRange IS INTEGER

:=iInRange/7/F

Figure 7. IN -1 Range for the Pioneer

The difference between the SOFT relations for the

two platforms (with respect to the range to obstacles)

can be encapsulated in a function which transforms the

input variables from the range sensors to estimates of

the monitored quantity Range. The computation of

LTransformRange

Type: 1NTEGER

Parameters:

i_lRange 1S 1NTEGER

: 0117

[ klRange <= 200i_lRange > 900

:= (900 - iIttRange)/8 117

I HilrtRange <= 900

Figure 8. IN -1 Range for the lego-bot

IN -1 for the Pioneer is pictured in Figure 7 and for

the lego-bot is in Figure 8. For the Pioneer, the sonar

inputs range from 0 to 700 and must be scaled appro-

priately to a number between zero and 100.

For the lego-bot, the transformation is more com-

plex. Both the sonar and the infrared distance sensors
have a certain range close to the sensor where the sig-

nals cannot be used for range detection (in the case of

the sonars, the signals that are emitted bounce back to

the sensor too fast for the sensor to detect). Thus, the

sensor will report that no obstacle is present when, in

fact, an obstacle is very close. In the case of the Pi-

oneer, this problem is handled by the Saplfira library.

For the lego-bot, however, the RSML -e specification

must include a minimum threshold as well as a scaling

factor for the maximum values. In our case, readings
below 200 from the infrared sensor cannot be trusted

and we simply treat any reading below 200 as if the

distance is 0, indicating that no obstacle has been (or

can be) detected (Figure 8).

Thus, we have shown that even though the sensors

and the way in which we have access to the sensors

differs widely between the Pioneer and the lego-bot,

we can still use the same SOFTnEQ model for both
robot platforms. In this way, we make the high-level

behavior robust and reusable in the face of changes in

the range finder.

6.2 Speed--

Saphira versus Pulse Modulation

The previous section focused on platform depen-
dent variabilities in the IN and IN -1 relations. The

Pioneer and the lego-bot have more significant differ-



Figure 6. The state machine for the lego-bot

ences in the way that they control their propulsion and

in their steering systems (the OUT and OUT -1 rela-

tions).

The Pioneer's Saplfira library provides a lfigh-level

control of the Pioneer's motors so that the specifica-

tion for SOFT on the Pioneer platform is very simi-

lar to REQ. The transformation of the desired speed
performed in OUT -1 for the Pioneer (Figure 9) only

requires some minor scaling with respect to the Pio-
neer's maximum speed. The result of this transforma-

tion can then be directly sent to the Pioneer platform

and Saphira will control the hardware to achieve the

desired speed.

PTransformConSpeed

Type: INTEGER

Parameters:

iConSpeed IS INTEGER

: 0IF

lico pe =0 ITI
:= (PMaxSpeed * iConSpeed)/100 IF

lico pe =0

Figure 9. OUT -1 Speed for the Pioneer

On the other hand, the OUT -1 specification for the

speed of the lego-bot is significantly more complex.

MotorPulseStatus

Location: ..MotolOn

Transition: Off@ On

Condition:

TIME >= PREV STEP (..MotolPulseStatus TIME ENTERED Off) + T

LMot ol P WMTime Out (He ading, ConSpeed)

PREV STEP(..MotmPulseStatus IN STATE Off) T

Transition: On@ Off

Condition:

TIME >= PREV STEP(..MotolPulseStatus TIME ENTERED On) + LPWMOnTimeOut T

PREV STEP(..MotolPulseStams IN STATE On) T

ConSpeed = 100 F

:=On

Condition:

I C°nSp eed = 100 ITI

Figure 10. The part of OUT -1 for the

Lego-bot that performs the pulsing on
the motors



This is because the SOFT relation for the lego-bot

must control the motors directly with low-level hard-
ware signals. The speed of the lego-bot is controlled

by a teclmique called pulse-width modulation of the

DC motors: the speed of the motors is determined by

the length of time which passes between pulses of cur-

rent applied to the motor. Therefore, the SOFT specifi-

cation cannot simply output the speed value with some

transformation applied; instead, we must use the com-

puted value for the controlled variable Speed to deter-

mine the pulse width for the motors and then output

the pulses accordingly; the motors will then provide

enough propulsion to move the lego-bot at the desired

speed.

This control strategy necessitates a more complex

OUT -1 relation for the desired speed; the OUT -1 re-

lation can no longer be a simple function--in this case
we need to add an additional state machine. To model

the pulse modulation we add a state variables to the

SOFT specification so that the machine can output the

required pulses. These additions are shown in Fig-

ure 6. The MotorPulseStatus state variable is the part
of the OUT -1 specification that determines the pulse

width. Figure 10 shows the definition of tlfis state vari-
able.

A key component of the pulse-width modulation is
the LMotorPWMTimeOut function which determines

the length of time to pulse the motors (Figure 11). No-

tice that because of the lego-bot's tank-track propul-

sion system, the motors must be pulsed both in the case
of a turn and in the case that the robot is moving for-

ward. Thus, the LMotorPWMTimeOut function takes

as parameters the controlled variables for speed and

heading and produces the correct timeout values.

The values for the pulse intervals were were cho-

sen by rtmning experiments to determine which pulse

interval would achieve which speed. We have, there-

fore, encapsulated these constants so that if we were to

change motors on the lego-bot in the future we could

simply change the constants rather than having to re-

visit the pulse-width modulation process.

Thus, despite the fact that the Pioneer and the lego-

bot differ significantly in the way that the motors are

controlled, the SOFTnEQ relation can again be reused
across the platforms. Furthermore, changes in the

REQ relation (and analogous changes to SOFTnEQ)
will be independent of changes in the OUT and
OUT -1 relations.

LMotorPWMTimeOut

Type: TIME

Parameters:

iHeading IS INTEGER

iConSpeed IS INTEGER

: LSlowPWMOflTimeOut IF

iHeading= 90 T F F

iHeading= 90 F T F

iConSpeed= 25 F F T

iHeaNng =45 T F F F

iHeaNng = 45 F T F F

iConSpeed = 50 F F T F

iConSpeed = 50 F F F T

iHeaNng=20 T F F

iHeaNng= 2O F T F

iConSpeed= 75 F F T

:=0 slF

I iC°nSp eed = 100 ITI

Figure 11. The timeout function for
pulse-width modulation on the Lego-bot.

7 Conclusions

This paper describes how structuring the require-

ments based on the relationship between the system



requirements and the software specification can lead

to benefits in terms of maintainability and reusability.

Specifically, we describe a teclmique for structuring

high-level requirements for reuse in the face of hard-

ware changes.

From the four variable model for process control

systems, we have described how the REQ relation can

be refined to the SOFT relation while maintaining a

separation between the part of SOFT which is related

to REQ (S OFTnEQ) and the parts of S OFT which han-

dle the particular sensors and actuators in the system

design (IN -1 and OUT-l). Tiffs allows us to sepa-

rate changes in the requirements from sensor and ac-

tuator changes and achieve better maintainability and

reusability.

This techniques was demonstrated on a case study

in the mobile robotics domain using two quite differ-

ent robots. One robot is commercially produced and

is equipped with a rich control library that provides

many complex control functions, for example, travel-

ing at a requested speed. The other robot was build in-

house from Lego building blocks and off-the-shelf mo-

tors and sensors. This robot is controlled completely

by the software specification in RSML -e through our

NIMBUS toolset.

We demonstrated the usefulness of the structur-

ing approach by reusing the lffgh-level requirements

(REQ) across a (currently quite small) family of mo-

bile robots. Nevertheless, there are numerous issues

left to address. In the future, we plan to define more

complex control behaviors and investigate how indi-

vidual behaviors (or operational modes) can be suc-

cessfully reused.
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